
Notes on “C” Programming

Basic Model of Computation

 To solve any kind of problem we need to write a step-by-step process of solution using simple

instruction to obtain the result. There would be numbers of methods to solve a problem and solution may

differ from person to person.

 Example: If you have to inform a person with a distance of 10 KM then how will you do it?

 Person 1: Tele Calling to him

 Person 2: Messaging to him

 Person 3: Physical visit to him

 And so on…..

The Basic Steps of Computation:

a. Formulating the Problem and decide the data-types to be input.

b. Identifying the step of computation that is necessary for getting the solution.

c. Identifying the decision point, under what circumstances a particular operation to be performed

and when not to be performed.

d. Knowing the expected results and verifying with the actual values.

Procedure for Problem Solving

 To solve a problem first we have to break down the problem into small parts which can be solved

step by step to arrive at the final solution. It need not involve the computer. Every problem is unique by

itself, but some steps are common. They are as follows…

1. Spend some time to understand the problem thoroughly. In this step we do not need a computer.

We need to try to answer what is expected & how to get it.

2. Construct a list of variables that are needed to get the solution of the problem.

3. Decide the layout for the output presentation.

4. Select the programming technique which is best suited to solve the problem. Then carryout a

coding using a programming language.

5. Test the Program. In this step we test the each part of the program whether it is functioning

properly or not.

6. Validation of the program. This step guards the program against wrong data processing. Here we

check the program by input wrong data to it. If wrong data is processed then there is an error else

program is correct.

Algorithms

 It is a set of instruction which describe the steps to be followed to carry out an activity. If it is

written in the computer programming language then it is called a program. It tells us how to go about for

getting the solution of a problem.

Example:

Making a cup of Tea

1. Begin

2. Take the suspense

3. Turn on The Gas

4. Put ignition to the Gas

5. Add some water in the suspense

6. Add some tea powder & Sugar

7. Boil it upto 5 min

8. Turn off the Gas

9. Filter the Tea

10. Serve it into the cup

11. End

Identify whether a number is odd or even

1. Begin

2. Input a Number (Read a No)

3. Divide the Number by 2

4. If the remainder is 0, then No is even

5. Else The No is Odd

6. End

Calculate the Total of serial no upto 9

1. Begin

2. Read a number 9

3. Take a variable x and assign 1 to it

4. Take another variable as sum

5. Add the value of x to sum

6. Add 1 to x

7. check if x>=9 then display the value of sum

8. else repeat the step 5 & 6

9. end

Flow Chart

 A Flow chart is a graphical representation of the sequence of operations for the solution of a

problem. Flow chart shows the sequence of instruction written in a single program or subroutine.

 It uses boxes and lines of different shapes to denote different types of instructions. The instructions

are written in these boxes in clear and concise manner. These boxes are connected with solid lines with

arrow head, these lines are called flow line. It denotes the flow or actual sequence of the program. Though

the flow chart shows a program in a graphical form, logical errors can be detected very easily.

 Once a flowchart is ready, the making a programming code in any programming language becomes

very easy.

Flow Chart Symbols

Terminal: - It is used to indicate the Starting (Begin) or Ending (End) of a Program. It is

the first symbol & also the last symbol in the flowchart.

Input / Output: - It is used to indicate the operation of input and output of the

program. If there is a program input from a Disk, CD, Pen Drive or any other input devices

then that step will be indicated in this box. Also an output to display on the monitor is also

represented here.

Processing: - it is used to represent the process of a program. An arithmetic instruction,

Data movement in a program, addition, subtraction, multiplication, division type operational

instructions are represented here.

Flow Lines: - A Line with arrow head is called flow line which is used to indicate the

sequential flow of instruction in a program. These flow lines indicates a data flow of left to

right, right to left and top to bottom only. Bottom to top flow line is not used in flow chart.

Decision box: - It is also called as Diamond box. It is used to indicate a point at which a

decision has to be made and to branch to one of the alternatives.

Connectors: - If a flow chart becomes long and the flow lines got crisscross the it need

another area or paper to make a prefect flowchart. To join these two area or paper we need

connector. A circle connector is used to connect two part of a program written in a single

paper. A pentagon shape is used to connect two part of a program written in two different

papers.

Predefined Process (Function):- Used to represent a group of statements performing

one processing task.

Algorithm to Identify smallest number among 7 numbers

12,5,8,14,17,34,3

1. Start

2. Take 7 variables a,b,c,d,e,f,g.

3. Read the 7 variables

4. Compare a < b, if true

5. Compare a < c if true

6. Compare a < d if true

7. Compare a < e if true

8. Compare a < f if true

9. Compare a < g if true

10. a is smallest

11. else compare b < c if true

12. Compare b < d if true

13. Compare b < e if true

14. Compare b < f if true

15. Compare b < g if true

16. b is smallest

17. else compare c < d if true

so on …..

 30. compare f < g

 31. f is smallest

32.Else g is smallest

Algorithm to Check multiple of a number

1. Start

2. Take variables x, n & count

3. Read the variable x, n as 0 & count as 0

4. Check x > n, if true

5. Add 1 to n

6. Divide x by n

7. Check x is divisible by n, if true

8. Add 1 to count

9. Repeat the step 4, 5, 6 & 7

10. If false, repeat the step 4, 5, 6 & 7

11. If false, display Count

12. end

Algorithm to check whether No is Prime or Not

1. Start

2. Take variables x, n & count

3. Read the variable x, n as 0 & count as 0

4. Check x > n, if true

5. Add 1 to n

6. Divide x by n

7. Check x is divisible by n, if true

8. Add 1 to count

9. Repeat the step 4, 5, 6 & 7

10. If false, repeat the step 4, 5, 6 & 7

11. If false,

12. Check count<= 2, if true

13. The No is Prime

14. If false, The no is Not Prime

15. end

Symbols Used in C Programming

; Semi Colon

. Dot

, Coma

: Colon

“ Double Quotes

‘ Single Quotes

! Not

% Modulo

^ zor / caret / circumflex

& Ampersand

() Parenthesis

{ } Curly Braces

[] Square Braces

$ Dollar

Hash

/ Forward Slash

\ Back Slash

* Asterisk

| Bar

_ Underscore

- Hyphen
~ Tilde

` acute, backtick, grave, grave accent, left quote, open quote, or a push

What is a variable?

In C Programming Variable is a storage location in Main memory (RAM) of computer associated by the “C” Compiler

to manipulate different types of data. Variable holds data that can be modified during program execution.

Assigning Name to a variable

• We can use A to Z, a to z, 0 to 9 and underscore (“_”) to give name to a variable.

• No other special characters should be used.

• The first character of the variable should always a letter or underscore. Never use number as the first

character.

• Variable name in “C” Language is case sensitive. It means “num”, “Num” & “NUM” are three different

variable name.

• No space should be used within the variable name.

Invalid variable name: 2num, 2_sum, 3num_, account no

Valid variable name: Num, sum, num_1 & _av etc.

Keywords / Reserved words

 When C Compiler is designed at that time some words are

reserved to perform specific task, those words are called “Reserved

Keywords”. These reserved keywords should not be used as any variable

or function name. If we do so then error occurred.

Data Type in “C”

 The kind of data that the variable may hold in a programming language is called Data Type. There is various

types of data that is to be manipulated in C programming such as Integer, Floating Point, Character, String, Real etc.

Integer Data Type (int)

 In this kind of data type we store an integer number like 1, 2, 56, 237, 32767 etc.

 The keyword used to denote this kind of Data Type is “int”

 Data Range: -32768 to 32767

 Default value of Integer variable is 0

Declaration of Integer variable

Syntax

 Datatype variableName;

 Datatype variableName = value;

 Datatype variableName1 = value1, variableName2 = value2, variableName3 = value3;

Example

 int num1; (Only Variable is declared)

 int num2 = 326; (variable is declared & value 326 is assigned to the variable)

 int sum = 0, num3 = 124, num4 = 332; (Multiple variable declared and assigned with its value)

Floating Point Data Type

 In this kind of data type we store a floating point number like 1.23, 2.56, 56.0001, 237.00 etc.

 The keyword used to denote this kind of Data Type is “float”

 Data Range: 3.4 x 10-38 to 3.4 x 1038

 Default value of floating point variable is 0.00000

Declaration of Float variable

Syntax

 Datatype variableName;

 Datatype variableName = decimalvalue;

Example

 float num1; (Only Variable is declared)

 float num2 = 326.34; (variable is declared & value 326.34 is assigned to the variable)

 float average = 0.00; (variable is declared & value 0.000000 is assigned to the variable)

Character Data Type

 In this kind of data type we store a character like a, b, c, D, E, F, 1, 6, $, &, % etc.

 The keyword used to denote this kind of Data Type is “char”

 Data Range: -128 to 127 (ASCII Codes data)

 Default value of character variable is null

Declaration of character variable

Syntax

 Datatype variableName;

 Datatype variableName = ‘value’;

Example

 char Alphabet; (Only Variable is declared)

 char First_Alphabet = ‘A’; (variable is declared & value ‘A’ is assigned to the variable)

 char Symbol_Dollar = ‘$’; (variable is declared & value ‘$’ is assigned to the variable)

String Data Type

 In this kind of data type we store multiple characters like Ram, Unitty2019, Akash Kumar, 25A@ etc.

 The keyword used to denote this kind of Data Type is “string”

 Data Range: as per the available memory

 Default value of string variable is null

Declaration of String variable

Syntax

 datatype variableName[no of character to store];

 datatype variableName [no of character to store]= {“value”};

Example

 char Name[20]; (Only Variable is declared)

 char First_Name[15] = {“Akash Kumar”}; (variable is declared & value “Akash Kumar”

is assigned to the variable)

 char Last_Name[15] = {“Bandichhor”}; (variable is declared & value “Bandichhor”

is assigned to the variable)

 string Fruit[10] = {“Apple”}

Declaration of Different Variables & Assigning its Values

✓ When we create a variable with a name than that is called “declaration of variable”.

✓ When we assign the first value to the variable than that is called “Initialization of the variable”.

✓ If we do not assign any value to a variable then the default value will be “0” in case of integer & float

and “null” in case of char & string variable. But it will not initiate with a value and program may not

work.

Declaring Integer variable

 DataType VariableName;

 int num1; (a variable is created with a name “num1” with default garbage value 0 or 1)

 int num2, num3, num4; (a group of variables are created named

num2 num3 & num4 with default value 0)

 int num5 = 24; (a variable is created with a name “num5” with assigned value 24)

 int num6 = 5, num7 = 84; (a group of variables are created named

num6 with assigned value 5 & num 7 with assigned value 84)

Assigning a variable separately

 int num8; (a variable is created with a name “num8” with default value 0)

 num8 = 75; (num8 is assigned with a value 75 here)

Declaring Floating Point variable

 DataType VariableName;

 float num1; (a variable is created with a name “num1” with default value 0.00)

 float num2, num3, num4; (a group of variables are created named

num2 num3 & num4 with default value 0.00)

 float num5 = 24.45; (a variable is created with a name “num5” with assigned value 24.45)

 float num6 = 5.00, num7 = 84.67; (a group of variables are created named

num6 with assigned value 5.00 & num 7 with assigned value 84.67)

Assigning a variable separately

 float num8; (a variable is created with a name “num8” with default value 0.00)

 num8 = 75.34; (num8 is assigned with a value 75.34 here)

Declaring character variable

 DataType VariableName;

 char chr1; (a variable is created with a name “chr1” with default value ‘null’)

 char chr2, chr3, chr4; (a group of variables are created named

chr2 chr3 & chr4 with default value ‘null’)

 char chr5 = ‘y’; (a variable is created with a name “chr5” with assigned value ‘y’)

 char chr6 = ‘n’, chr7 = ‘$’; (a group of variables are created named

chr6 with assigned value ‘n’ & chr7 with assigned value ‘$’)

Assigning a variable separately

 char chr8; (a variable is created with a name “chr8” with default value ‘null’)

 chr8 = ‘P’; (chr8 is assigned with a value ‘P’ here)

Declaring string variable

 DataType VariableName;

 string str1; (a variable is created with a name “str1” with default value “null”)

 string str2, str3, str4; (a group of variables are created named

str2 str3 & str4 with default value “null”)

 string str5 = “Unitty Academy”; (a variable is created with a name “str5” with

assigned value “Unitty Academy”)

 string m_brand1 = “Apple”, m_brand2 = “Samsung”;

(a group of variables are created named m_brand1 with assigned value

“Apple” & m_brand2 with assigned value “Samsung”)

Assigning a variable separately

 string country; (a variable is created with a name “country” with default value “null”)

 country = “India”; (country is assigned with a value “India” here)

Static Variable in C

 A Static variable is initialized only once, when the program is compiled. It is never initialized again. If it is not

initialized by the user then it initializes the value “0” (zero) to the variable. The static variable exists in the memory

until the program termination.

Syntax:

static data_type var_name = var_value;

static int count = 0;

some interesting facts about static variables in C.

1) A static int variable remains in memory while the program is running. A normal or auto variable is destroyed

when a function call and its role is over.

For example below program prints “1 2”

Difference between Normal variable & Static Variable

Normal Variable or Auto variable Static Variable

1. The normal variable is declared again and again
when a function is run.

2. The normal variable store a garbage value between
“0” and “1” randomly, if we do not initialize it, so
result differs when run in different computer.

3. The value of normal variable ended when the
function is ended.

4. The value of this variable is used only within its
function.

5. It is a local variable.

1. The Static variable Declare only once in a program.
2. The Static variable stores “0”, if we do not initialize

it, so it runs without any error.
3. The value of static variable exists until the program is

ended.
4. The value of static variable is used anywhere in the

program.
5. It is a global variable.

Program Example

#include <stdio.h>

int fun()

{

static int count = 0;

count = count + 1;

return count;

}

int main()

{

printf("%d ", fun());

printf("%d ", fun());

return 0;

}

Output:

1 2

Second example with normal variable

#include<stdio.h>

int fun()

{

int count = 0;

count++;

return count;

}

int main()

{

printf("%d ", fun());

printf("%d ", fun());

return 0;

}

Output

1, 1

How to Choose correct Data type for the program

 For selection of data type we need to concern on the following points…

Estimate the output value of the program that it falls under which data range. (see data range table)

a. If the output value may positive then take unsigned data type

b. Any variable that may contain decimal value or the output may the decimal then take that variable as

float data type.

c. If storing value is a single character than take char data type.

d. If storing value is multiple characters than take string data type.

e. If output may null then we can choose a void data type.

Constant /or/ Literal

 In a program a name may be assigned to store a data. If that data remains the same throughout the program

execution, then it is called a “constant” or “literal”. A value written as constant for a program never change but if it is

written as variable then it may change.

 There are three types of Constants

1. Character Constant

2. String Constant

3. Numeric Constant

Character constant

 Character constant is a single character, single digit or a single symbol enclosed with a pair of single

quotation mark ‘ ’ .

Example: ‘A’ ‘c’ ‘2’ ‘#’ etc

String constant

 String constant is a sequence of alpha numeric characters enclosed with a pair of double quotation mark “ “

Example: “apple” “Table No 21” “*123#” etc

Numeric constant

 Numeric constant has a constant value in numbers. The value may positive or negative number. There are

four types of numeric constant.

a. Integer constant

b. Floating point constant

c. Octal Constant

d. Hex constant

Integer Constant

 Integer constant are the whole no with positive or negative value. It may short or long data type.

i.e 5 124 -65 0 -789 or 34456567787 etc

Floating-Point Constant

 Floating-Point constant are the fractional number. It has real value with positive or negative value. It may be

written in two forms as fractional or exponential.

Fractional i.e. 5.23 124.43 -65.21 0.26 etc

Exponential i.e. 3.7E12 4.2E-15 etc.

Octal Constant

 Octal constant are the integer number with a base of 8. The digit allowed in the system are 0 to 7. It may

positive or negative. It is written as preceding the digit “0”.

Octal No i.e. 005 0124 -098 026 etc

Hex Constant

 Hex constant are the Hexa-decimal number with a base of 16. The digit allowed in the system are 0 to 9 and

A to F. It may positive or negative. It is represented as preceding the “0x”.

Hexa-Decimal No i.e. 0x5 0x124 -0x98 0x26 etc

Symbolic Constant
 A symbolic constant is represented as a name of a symbol.

Symbolic Constant i.e. pi etc.

Declaring a constant

Syntax

#define constantName constantValue

Example

#define organization “unitty academy” (String Constant)

#define vowel2 ‘e’ (character Constant)

#define num1 24 (integer constant)

#define increment 2400.00 (floating point constant)

#define oct1 035 (octal constant)

#define hexa1 0x54 (Hexa constant)

#define pi 3.14 (Symbolic constant)

Writing comment in a program
Comment in “C” program is a statement which is escaped by the compiler for execution. The “C” compiler

never executes these lines. Comments are of two types.

a. Single line comment (Double forward slash ”//” is used before the comment text)

b. Multi-Line Comments (a forward slash with asterisk “/*” is used before the text & an asterisk with

forward slash “*/” is used after the comment text.

How to write comments in a program
// This is a single line comment

// This line also skipped by compiler.

/* Programmer Name: Abinash Kumar

 This program is developed to identify the prime number

 Through user entry */

Statement in “C”
Statement is a line of instruction which display the desired text of user or output value of a program. It is

written in a parenthesis with double quotation following the command “printf”.

Syntex: - printf(“Write the text to display”);

Example: - printf(“My Institute Name is Unitty Academy, Sinapali”);

Runtime Library in “C”
A runtime library is a file that contain one or more pre-written programs to perform specific & commonly

used function. It is used in high level languages like “C”, “C++” etc. Each runtime library file contains separate code to

perform separate task by using its predefined functions. These files are also called header file.

Example: -

stdio.h This file contains the Basic input/output functions

conio.h This file contains console input/output functions

math.h This file contains all mathematical functions

geomatry.h This file contains Geometrical functions

graphics.h This file contains functions to perform 2D & 3D graphics

etc…

Functions in “C”
A function is a sub-program that contains instruction or statement to perform a specific computation on its

variable.

Function is defined as the action carries out by a program or subroutine. In “C” Compiler the most important

and useful function is “main()” function. A function in “C” is similar to a subroutine or procedure in other procedural

language like PASCAL. When “C” compiler run a program at first the “main()”function is invoked (called) then other

functions.

Delimiter in “C”
After writing a function name like main(), there are a pair of curly braces to denote the beginning and end of

the function body. That braces are called the delimiter. The Opening curly braces denote the initiation of the

function body & the Closing curly braces denotes the end of the function body.

Structure of a Program in “C”

 Library Files

 Main function

 Delimiter Start

 Program Statement 1

 Program Statement 2

 .

 .

 .

 Delimiter end

 (Program End)

Example of a sample “C” Program.

 #include<stdio.h>

 main()

 {

 printf(“/n I learn computer training at Unitty Academy, Sinapali”);

 printf(“/n The sum of 5 & 6 is %d”, 5+6);

 } Argument List (it may a function, variable, value or all)

Control String

Format Specifier in “C”
 The printf() function is the most important function in “C” to display the formatted text or output. To format

the output data it needs some format specifiers according to the “Data Type” used for the concern variable.

 Format specifier is a single character followed by “%” sign which specify the text or number to display in the

given format.

%c is used to display a single character

%d is used to display a decimal integer

%f is used to display a floating point no

%h is used to display a short integer

%o is used to display an octal no

%s is used to display a string

%x is used to display a hexa-decimal no

Example of a sample program to display different variables declaration with its output value using format specifier.

#include<stdio.h>

main()

{

// This program will display the output according to the format specifiers used

float salary = 20000.00;

int num1 = 4540;

short int num2 = 125;

printf("\n The Salary is Rs %f", salary);

printf("\nThe intiger no is %d ", num1);

printf("\n The short intiger no 2 is %h", num2);

printf("\nThe octal no of 125 is %o", num2);

printf("\nThe hexa-decimal no of 4540 is %x", num1);

printf("\n%f is The Salary", salary);

}

printf("\n The Salary is Rs %f", salary);

 in this statement \n is used to create a line break.

Important Note: -

o Where the format specifiers are took place at that position the value of the concern variable will

displayed.

o We can use multiple format specifiers in the control string to use more than 1 variable in the

argument list respectively for correct output. Example

▪ printf("\n The integer no is %d \n The octal no of 125 is %o", num1, num2);

• Output 1 is The integer no is 4540

• Output 2 is The octal no of 125 is 175

Operator in “C”
 The operators are the sign, symbol or word, which operate two or more variable or value in a program. We

need operators to perform arithmetic operation like addition, subtraction, multiplication, division and so on.

 There are 7 types of operators in “C” Compiler.

1. Arithmetic Operator

2. Relational Operator

3. Logical Operator

4. Assignment Operator

5. Pointer Operator

6. Special Operator

7. Bitwise Operator

Arithmetic Operator in “C”

 An arithmetic operator is a symbol which performs arithmetic operation like addition, subtraction,

multiplication, division & Remainder.

Operator Symbol used Form of
operation

Operation done

Addition + (Plus) x + y Add y to x

Subtraction - (Minus) x - y Subtraction y from x

Multiplication * (Multiplication) x * y Multiply x times to y

Division / (Division) x / y Divide x by y

Remainder % (Modulo) x % y
Divide x by y and output the

remainder

Example Arithmetic Operator used in “C” Program

#include<stdio.h>

main()

{

// This program will calculate the drawn salary of an employee

float salary = 5000.00, incentive = 1000, total_sal = 0, penalty = 0, drawn_sal = 0;

int month = 4, ua_leave = 2;

total_sal = (salary * month)+ incentive;

penalty = (salary / 30) * ua_leave;

drawn_sal = total_sal - penalty;

printf("Dear Employee, Your Monthly Salary is Rs %f. Your Incentive amount is Rs %f. Your Total Salary is Rs %f. But

You took un-authorized leave for %d days, So your penalty amount is Rs %f. Now your drawn salary for %d month is

Rs %f",salary,incentive,total_sal,ua_leave,penalty,month,drawn_sal);

}

/* Output will be

 Dear Employee, Your Monthly Salary is Rs 5000.000000. Your Incentive amount is Rs 1000.000000. Your Total Salary

is Rs 21000.0 00000. But You took un-authorized leave for 2 days, So your penalty amount is Rs 333.333344. Now

your drawn salary for 4 month is Rs 20666.666016 .

How to use “dev C++” for “C” Program

Download Dev C++ → Right Click on it → Choose Run as administrator →Click Yes → Click Next → Click Next → Click

Finish. (Now Dev C++ is installed in your computer and a shortcut icon will be shown on the desktop)

How to save a program code for “C”

Double Click on the shortcut icon of “Dev C++” → Choose File Menu →New →Source File →type your programming

code → Go to File menu → choose save → Give a name to your program file →then click save as type dropdown

→choose “C Source Files”→ Click “Save”

How to compile & run a program code in “Dev C++”

Go to Execute menu → choose compile →correct the error in the program if it shows →again compile it →if there is

no error now → Click save button →Go to Execute menu →choose run.

Increment & Decrement Operator

 The increment operator in “C” Program is represented by “++” sign and the decrement operator is

represented by “- -” sign. Increment operator increases the value of a variable by adding 1. Decrement operator

decreases the value of a variable by subtracting 1.

Example:

 X = 5; here the value of x is 5

 ++x; here the value of x will be 6

 Y = 8; here the value of Y is 8

 --Y here the value of Y will be 7

 Again if we write

 --x here the value will be 5

 ++Y here the value will be 8

Note: We can use the following procedure to add or subtract 1 to a variable.

++a or a = a+1 or a+=1

--b or b=b-1 or a-=1

Pre-Increment & Post-Increment Operator

 Pre-Increment operator is represented with a “++” sign before the variable name.

 Pre increment operator adds the value 1 to the concern variable and then assign the new value to the next

variable.

Pre Increment operator Example

 int sum = 0, x = 12;

 Sum = ++x; (Here value of x is added with 1 and new value becomes 13 then that value transferred to

 the variable “Sum” and now value of sum will be 13).

 Post-Increment operator is represented with a “++” sign after the variable name.

 Post- increment operator first assign its existing value to the next variable then add the value 1 to the

 concern variable and form new value.

 int sum = 0, Y = 23;

 Sum2 = Y++; (Here value of Y which is 23 is transferred to the next variable “Sum2” and makes the value

of Sum2 to 23 then increase the value of Y by adding 1 and form a new value of “Y” as 24).

x = 12, Y = 23;

Sum3 = x++ + Y + Y++; 58

Sum4 = --y + Y-- + ++x; 59

Precedence of Arithmetic Operators

 If we have various arithmetic operators to calculate various values then which arithmetic operator is used to

evaluate first is called Precedence.

 But if we have two operators in the same precedence then they are evaluated Left to Right but in case of

increment or decrement operator they are evaluated right to left.

 The Highest precedence is evaluated first.

Relational & Logical Operators

 The operator which is used to compare between the value of two variables is called relational. Such

as Less than, Greater Than, Greater than equals, not equals etc.

 The operator And (&&) and OR (||) is called Logical Operator.

Relational Operator Table

Operator Operation (Action)

> Greater Than

>= Greater than equal to

< Less Than

<= Less Than Equal to

== Equal to

!= Not Equal to

Logical Operator Table

These operators output the result either “True” or “False”. True represent “1” or “non zero” & False

represent “0”.

x = 5;

y = 7;

x > y; Output 0

y > x; Output “1” or “non zero”

result1 = x > y; Output 0 will stored in the variable result1

result2 = y > x; Output “1” or “non zero” will stored in the variable result2

Example

#include<stdio.h>

main()

{

// This program is the example of Logical & Relational Operators

Int x= 5, y = 8, z = 0, result1 = 0, result2 = 0, result3 = 0, result4 = 0;

result1 = x<=y;

result2 = x>=y;

Operator
Operation

(Action)

&& And It evaluate each and every expression.

|| Or
It evaluates all the expression one after another until it
returns true or end of the expression.

! Not
It reversed the result (makes true if false and make false
if true)

result3 = x!=y;

result4 = x==y;

printf("is x is greater than y %d",x>y);

printf("\n is x is Less than y %d",x<y);

printf("\n is x Less than equals y %d \n is x greater than equals y %d \n is x not equals y %d \n is x equals y

%d",result1, result2, result3, result4);

}

Output of the Program

 is x is greater than y 0

 is x is Less than y 1

 is x Less than equals y 1

 is x greater than equals y 0

 is x not equals y 1

 is x equals y 0

Precedence of Relational & Logical Operator

Pointer Operator

 The Pointer operator are the “address of operator” (&) and the “indirection operator” (*). The

“indirection operator” is used to get the content of a file, memory location or cell. The “&” operator

returns the address of the variable.

Example:

Int salary = 5000; Here an integer variable is declared as “salary”

Int *data_in_salary; Here a pointer variable is declared as “data_in_salary”

data_in_salary = &salary; Here address of the data in the variable salary is

assigned to the pointer variable “data_in_salary”.

Program Example

#include<stdio.h>

main()

{

// This program is the example of Pointer Variable

int salary = 5000;

int *data_in_salary;

data_in_salary = &salary;

printf("\n value of salary is %d",salary);

printf("\n value of data_in_salary is %d",*data_in_salary);

*data_in_salary = 25000;

printf("\n value of salary is %d",salary);

}

Output of the Program

value of salary is 5000

 value of data_in_salary is 5000

 value of salary is 25000

N.B. “When we change the value of a pointer variable (here *data_in_salary) then the value of the

addressed variable (here salary) will be changed.”

Special Operator

 The Programming Language “C” Contains many different operators but some operators do not

come under any category, they are called miscellaneous or Special Operator.

Example:

Conditional Operator: - ?:

Coma Operator: - ,

Sizeof operator: - sizeof

Syntex

Variable_Name = Expression_1 ? Expression_2 : Expression_3

Here if the condition of the expression 1 is comes true than the value of expression 2 will be assigned to

the variable else the value of expression 3 will assigned to the variable.

Program Example: 1

#include<stdio.h>

main()

{

// This program is the example of special operator (? :)

int target = 5000, incentive = 1000, sales = 6500, x = 0, y = 0, z = 0;

x = sales > target ? incentive : 0;

y = sales < target ? incentive : 0;

z = sales == target ? incentive : 0;

printf(" \n U Get the amount against incentive Rs %d",x);

printf(" \n U Get the amount against incentive Rs %d",y);

printf(" \n U Get the amount against incentive Rs %d",z);

}

Output of Program

U Get the amount against incentive Rs 1000

 U Get the amount against incentive Rs 0

 U Get the amount against incentive Rs 0

Program Example: 2

#include<stdio.h>

main()

{

// This program is the example of special operator (? :)

int target = 5000, incentive = 1000, sales = 6500;

char = *msg1, *msg2, *msg3;

msg1 = "Bravo, Well don boy, keep it up, promotion is near by u";

msg2 = "hey boy, u do worse duty, be seriour and sale perfectly";

msg3 = "neutral duty, do some more";

printf(" \n %s",sales > 5000 ? msg1 : msg2);

printf(" \n %s",sales < 5000 ? msg1 : msg2);

printf(" \n %s",sales == 5000 ? msg3 : msg2);

}

Coma Operator (Special Operator Category)

 Coma operator (,) is used to build a compound expression by putting several expression inside a set

of parenthesis. The expression is evaluated from “Left to Right” & the last evaluated value is the final

value.

Example:

#include<stdio.h>

#include<conio.h>

main ()

{

 // This program is the example of coma Operators

char chr1 = 'z', chr2;

printf (" \n The coma operator expression value is %c", (chr2 = chr1, chr1 = getchar ()));

printf (" \n The Original value of C is %c \n", chr2);

}

Output of the Program

f (User entry done here)

 The coma operator expression value is f

 The Original value of C is z

Sizeof operator

The “sizeof” operator returns the memory size of a variable.

Syntex

 sizeof(variable_Name);

Example

 sizeof(str1);

Program Example

#include<stdio.h>

main()

{

// This program will calculate the size of the variable

float salary = 5000.00, total_sal = 0, incentive = 1000, penalty = 0, drawn_sal = 0;

int month = 4, ua_leave = 2;

char grade1 = 'A', grade2 = 'b', alpha [26];

printf(" \n Memory size of float variable salary is %d byte", sizeof(salary));

printf(" \n Memory size of char variable grade1 is %d byte", sizeof(grade1));

printf(" \n Memory size of integer variable month is %d byte", sizeof(month));

printf(" \n Memory size of array variable alpha is %d byte", sizeof(alpha));

}

Output of the Program

Memory size of float variable salary is 4 byte

Memory size of char variable grade1 is 1 byte

Memory size of integer variable month is 4 byte

Memory size of array variable alpha is 26 byte

Bitwise Operator

 To operate the operand in machine level, we need bitwise operators. A bit is a smallest possible

unit of data storage and it can have only one of the two possible values “0” or “1”.

 The bitwise operator is operated using two shift operations.

a. Left Shift Operation

b. Right Shift Operation

Left Shift Operation

 The left shift operation shifts the bits to the left for a specified no of bit operation. The sign used to

represent left shift operation is double less than “<<”.

Syntax

 Variable_name << No of bits to shift

Example

 int num1 = 7, num2 = 12;

 num1 << 1 (The new value will be 15)

 num2 << 2 (The new value will be 48)

BIT Range for Left Shift
Operation

128 64 32 16 8 4 2 1

Left Shift 1 of 7

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

Left Shift 2 of 12

Original Bit of 7

After left shift to 1

Original Bit of 12

After left shift to 2

Right Shift Operation

 The right shift operation shifts the bits to the right for a specified no of bit operation. The sign used

to represent right shift operation is double greater than “>>”.

Syntax

 Variable_name >> No of bits to shift

Example

 int num1 = 7, num2 = 12;

 num1 >> 1 (The new value will be 3)

 num2 >> 2 (The new value will be 3)

Original Bit of 7

After right shift to 1

Original Bit of 12

After right shift to 2

Bitwise Operators & Its Meaning

Bitwise Operator Meaning

& Bitwise AND

|| Bitwise Or

^ Bitwise xor

~ 1’s Complement

>> Right Shift

<< Left Shift

Program Example

0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0

BIT Range for Right Shift Operation

128 64 32 16 8 4 2 1

Right Shift 1 of 7

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

Right Shift 2 of 12

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

Expression

 An expression in programming language “C” is a combination of operators, Numbers & Names that

work together to carry out the result.

Types of Expression

 There are four types of expression in “C” Language.

a. Constant Expression Ex. 5+6*34/3.5;

b. Integer Expression Ex. J*K+5-a;

c. Float Expression Ex x/y+3.56;

d. Pointer Expression Ex P; &j; P+j;

Type Conversion

 The Programming Language “C” Permits us to mix the different types of variable & constant for

calculation. Sometimes it is required to convert a variable to another type, at that time we need

“typecast”. The compiler performs these calculations without intimating the user is called “implicit

conversion”. The programmer may instruct the compiler to convert one type of variable to another type is

called “Explicit Conversion”.

Example of Explicit Conversion (Type Conversion)

Syntax

 (Typecast_Datatype)Variable_Name

 (Float)x;

 (int)Salary;

Printf(“The Converted value of x from integer to float is %f”, (float)x);

Program Example

#include<stdio.h>

#include<conio.h>

main ()

{

 // This program is the example Typecast

int x = 5, y = 7, sum =0;

float a = 5, b = 9;

float sum2 = 0, sum3 = 0;

sum = x + y;

sum2 = y/x;

sum3 = a/b;

printf (" \n The value of X is %d and \n the value of Y is %d", x,y);

printf (" \n The Total of X & Y before Typecast %d", sum);

printf (" \n The Total of X & Y after Typecast to float %f", (float)sum);

printf (" \n The division of X & Y before Typecast %f", sum2);

//The below line is example of implicit conversion

printf (" \n The Division of X & Y after Typecast to integer %d", (int)sum2);

printf (" \n The division of a & b before Typecast %f", sum3);

// implicit conversion ends here (autometic converted by the compiler witout informing the user)

printf (" \n The Division of a & b after Typecast to integer %d", (int)sum3);

}

Output of the Program

The value of X is 5 and

 the value of Y is 7

 The Total of X & Y before Typecast 12

 The Total of X & Y after Typecast to float 12.000000

 The division of X & Y before Typecast 1.000000

 The Division of X & Y after Typecast to integer 1

 The division of a & b before Typecast 0.555556

 The Division of a & b after Typecast to integer 0

Input / Output Statement

“C” Program allows us to read data from standard input device like Keyboard & Write data to the

standard output device like Monitor (VDU). For this purpose there is some input & output statement is

used.

 There are many library functions available for input & output devices. These functions are

categorized into 3 broad categories.

a. Console I/O Function it Receive input from keyboard & Write output to Monitor.

b. Disk I/O Function it read & write to the storage media like Floppy, Hard disk, SD Card etc

c. Port I/O Function it performs various input & output operation to the different ports

 like USB, VGA, HDMI, PS2, LAN, Audio port etc.

Console I/O Functions

Formatted Console I/O Functions

 Output Function printf(): This function displays the formatted output to the standard output device.

Syntax

 printf(“Message Text Format Specifier”, VariableName);

Example

 printf(“The sum of x + y is %d”, sum);

 input Function scanf(): This function accept the formatted input from the standard input device

 “Key Board”.

Syntax

 scanf(“Message Text Format Specifier”, addressofVariableName);

Example

 scanf(“Enter the value for x and y %d”, &x, &y);

Program Example

#include<stdio.h>

main()

{

// This program will calculate the drawn salary of an employee with user input

float salary = 5000.00, total_sal = 0, incentive = 1000, penalty = 0, drawn_sal = 0;

int month = 0, ua_leave = 0;

printf("Enter no of month ");

scanf("%d", &month);

printf("\n Enter Un Authorised Leave ");

scanf("%d",&ua_leave);

total_sal = (salary * month)+ incentive;

penalty = (salary / 30) * ua_leave;

drawn_sal = total_sal - penalty;

printf("\n You are receving your %d month of sal with %d days of UA_Leave is Rs %f",month, ua_leave,

total_sal);

}

Output of the Program

Enter no of month 5

 Enter Un Authorised Leave 7

You are receving your 5 month of sal with 7 days of UA_Leave is Rs 26000.000000

Unformatted console I/O Function

Character Input: - for Character input as unformatted function we use getch(), getche() & getchar()

function.

The getch() & getche() function is very similar as they respond without pressing of enter key of keyboard.

The only different is that the getche() function makes the user entry text visible but the getch() function

donot show the text entered by the user. If we use these two function in any program than we neet to

include the header file “conio.h” in the beginning of the program.

The getchar() reads one character from the key board after the new line character (enter key) is received.

Syntax

char x, y, z;

getch(variableName);

getche(variableName);

getchar(variableName);

Example

getch(x); reads a single character and store it to the variable x without visible user input.

getche(y); reads a single character and store it to the variable y with visible user input.

getchar(z); reads a single character and store it to the variable z after pressing enter key.

Character Output: -

putc()

putchar()

 if we have to print a single character in a program the instead of using the formatted output function

printf(), we must use the unformatted putc() or putchar(). For doing this we must enclose the character in

a single quotes (‘ ’).

Unformatted String input & Output: - gets() & puts()

gets() stands for “get the string”. It reads the string entered by the user till the newline character (enter

key press). It can assign the string to an array variable. We must use double quotes (“”) to enclose the

string.

puts() stands for “put the string”. It print the existing string of the variable or text encoded with double

quotes.

Syntax & Example

char name[25];

gets(variablename);

gets(name);

puts(variablename);

puts(name[]);

Program Example of all unformatted functions

#include <stdio.h> //This program is an example ofunformatted character function

#include <conio.h>

main()

{

char c, d, e;

printf("\nEnter a character getchar : ");

c = getchar();

printf("\nEntered character : getchar %c \n", c);

putchar(c);

printf("\nEnter a character 2 getch : ");

d = getch();

printf("\nEntered character getch: %c \n", d);

putch(d);

printf("\nEnter a character 2 getche : ");

e = getche();

printf("\nEntered character getche: %c \n", e);

putch(e);

return 0;

}

Program Output

gets & puts program example

#include <stdio.h> //This program is an example ofunformatted string function

#include <conio.h>

main()

{

char str1[20];

printf("\nEnter Your Name : ");

gets(str1);

printf("\n Your Name is %s \n", str1);

puts(str1);

return 0;

}

Program Output

Your Name is Ramanuj

Ramanuj

Field width Specifier

The printf() function allow the programmer to add formatting to the printed output. A digit preceding the

decimal point in the field width specifier controls the number as it is printed.

When we use field width specifier in the format specifier inside the control string, it set the “zero” before

the integer or after the decimal accordingly.

Example of field width specifier

#include<stdio.h>

main ()

{

 // This program is the example field width specifier

int num1 = 3476;

float num2 = 2657.345650;

printf("\n The float no without field width specifier is %f", num2);

printf("\n The float no with field width specifier is %2.3f", num2);

printf("\n The float no with field width specifier is %0.012f", num2);

printf("\n The integer no without field width specifier is %d", num1);

printf("\n The integer no with field width specifier is %8d", num1);

printf("\n The integer no with field width specifier is %08d", num1);

}

Program Output

The float no without field width specifier is 2657.345703

 The float no with field width specifier is 2657.346

 The float no with field width specifier is 2657.345703125000

 The integer no without field width specifier is 3476

 The integer no with field width specifier is _ _ _ _3476 (underscore means blank)

 The integer no with field width specifier is 00003476

Escape sequence

An escape sequence provides special formatting control on output of the program. It allows us to use Tab,

Line break (new line), Backspace, alert and so on in a program for output. It is also called Execution

character. It is used inside the control string encoded with double quotes. The back slash symbol “\” is

called escape in “C Program”.

Escape Sequence

Escape Sequence Purpose

\n It insert a new line

\b It set a back space

\f For form feed

\’ It insert single quotes

\\ It insert back slash

\t It insert a Tab

\r It return carriage

\a It Sound an alert

\” It insert double quotes

Example of escape sequence

syntax

printf(“escape sequence name Your control message of output format specifier”, variablename);

Example

printf(“\n the value of the variable x is %d”, x);

printf(“\n the value of the variable x is \t %d”, x);

Difference between printf() & scanf()

The major difference between scanf() & printf() is that in scanf() the data item argument must be preceded

by the address operator “&”. Example scanf(“%d”,&num1). It direct the system to read integer input from

the user terminal. But in printf() function variable name is written without address operator and it return

the output for the user.

Conditional Statements & Loops

 Statements in C are executed one after another is called the normal statement. But a statement

which instructs a system to perform same basic operation again and again until a condition is fulfilled is

called loop. It is the automated power of C Program. These are happens using control statements.

 Control statements allow us to change the sequence of instructions for execution. It is of two types…

• Conditional Branching

• Looping

Conditional Branching

 When a program decide whether the next statement is to be executed or not based on the result

value of the current expression, is called condition branching.

Looping

 When a program performs a set of operation repeatedly until a given condition is fulfilled is called

loop. In loop all the statements inside the loop are executed repeatedly. It is also called “iteration”.

Decision Making

 Decision making is a process to execute a specific task according to the conditional requirement.

Ex: - “a friend said to his friend that if it feels too hot then you put the fan switch on”.

If Statement

 The “if statement” is a control statement which test a particular condition. Whenever the evaluated

condition comes true the an action is carried out otherwise the given set of instruction is ignored.

 Syntax: If (conditional expression)

 {Statements};

 Example: if (sales>=50000)

 {incentive = (sales*10)/100}

Here if a salesman sale a product more than or equal to 50000 then he can gain an incentive upto 10

percent, but if sales below 50000 then no incentive is given to him.

Program Example:

#include<stdio.h>

main()

{

// This program will calculate the incentive of a salesman (if condition)

float sales = 0, incentive = 0;

printf("Enter the sales amount");

scanf("%f", &sales);

if (sales>=50000)

 {

 incentive = (sales*10)/100;

 printf("The incentive amount is %f", incentive);

 }

 printf("\n note: Please enter the sales amount above 50000");

}

If else Statement

 The else part of the “if statement” is run when the “conditional expression” of if statement comes

false. We can call it the false statement.

Syntax

 If (conditional Expression)

 {True Statement}

 else

 {false Statement}

Example:

 #include<stdio.h>

main()

{

// This program will calculate the incentive of a salesman (if else statement)

float sales = 0, incentive = 0;

printf("Enter the sales amount");

scanf("%f", &sales);

if (sales>=50000)

 {

 incentive = (sales*10)/100;

 printf("The incentive amount is %f", incentive);

 }

else

 {

 incentive = 0;

 printf("The incentive amount is %f", incentive);

 }

}

Multiple If Statement

 In the multiple if statement those statements will run which conditions are fulfilled.

Program Example

#include<stdio.h>

main()

{

// This program will calculate the incentive of a salesman (if else statement)

float sales = 0, incentive = 0;

printf("Enter the sales amount");

scanf("%f", &sales);

if (sales>=50000)

 {

 incentive = (sales*10)/100;

 printf("\n The incentive amount is %f", incentive);

 }

if (sales == 0)

 {

 printf("\n You are fired");

 }

if (sales < 50000)

 {

 incentive = 0;

 printf("\n You can avail salary only but The incentive amount is %f", incentive);

 }

If else if Statement (Nested if)

 In this statement, we can use more than one condition in a program and the program will run only

that single statement of the condition which is fulfilled.

Program Example

#include<stdio.h>

main()

{

// This program will calculate the incentive of a salesman (if else if statement)

float sales = 0, incentive = 0;

printf("Enter the sales amount\t");

scanf("%f", &sales);

if (sales>=50000)

 {

 incentive = (sales*10)/100;

 printf("\n The incentive amount is %0.2f \t", incentive);

 }

else if (sales == 0)

 {

 printf("\n You are fired");

 }

else if (sales < 50000)

 {

 incentive = 0;

 printf("\n You can avail salary only but The incentive amount is %d", (int)incentive);

 }

}

The Switch Case Statement

 Instead of using if-else-if Ladder, the switch case statement is used. The only different is that in

switch case statement u must have to use the integer constant as the conditional expression but in if-else-

if ladder you can use any datatype variable or constant for conditional expression to return the expected

result.

Syntax

Switch(variablename)

Case integervariablevalue:

 Statements;

 break;

Break statement is used to block the unwanted statement output after program execution. Because switch

case statement always run all those lines from where the condition comes true. To stop the execution after

the “true” statement, we must use “break” statement.

Not to do in switch case statement.

a. Never use char or string variable for “switch parameter”.

b. Never use decimal constant.

c. Never use character constant.

d. Never use a string for “case level”.

e. Never use variable for “case level”.

Program Example

#include<stdio.h>

main()

{

// This program will calculate the week day name according to day no entry. (Switch case)

int dayno = 0;

printf("Enter the Day no (1 to 7)\t");

scanf("%d", &dayno);

switch(dayno)

{

case 1:

 printf("\n Sunday \t");

 break;

case 2:

 printf("\n Monday \t");

 break;

case 3:

 printf("\n Tuesday \t");

 break;

case 4:

 printf("\n Wednessday \t");

 break;

case 5:

 printf("\n Thursday \t");

 break;

case 6:

 printf("\n Friday \t");

 break;

case 7:

 printf("\n Saturday \t");

 break;

default:

 printf("\n Please enter 1 to 7 \t");

}

}

The Loop construct

 The loop or iteration construct directs a program to perform a set of operation again and again until a

specific condition is achieved. This condition cause the termination of the loop. In “C Program” there are

three statements for looping they are

a. while loop

b. do …… while loop

c. for loop

While Loop

 The “while loop” allows evaluates a test expression before allowing entry into the loop. It means it is

an “entry control loop”. while loop construct first check the condition and if the condition is come true

then it execute the statements following the loop. Else it ignore the statement and break the looping.

Syntax

while (condition)

{

 Statement1

 Statement2

 ………………..

}

Program Example (while loop)

#include<stdio.h>

main()

{

// This program will display the even no from 1 to 100 (while loop statement)

int num1 = 0;

while(num1<100)

{

 num1 = num1+2;

 printf("\n The Serial No is %d", num1);

}

}

Print the Fibonacci series using while loop

1, 1, 2, 3, 5, 8, 13….. upto 100

Do…. while Loop

 The “do …. while loop” is an exit control loop. This loop execute the statement at least once before

checking the test expression (parameter). After execution of the statement it will check whether the test

expression is true or false. If test expression comes true, then it will repeat the statement else it will break

the loop. We must put a semi-colon (;) mark after while statement in do…while loop construct.

Syntax

do

{

Statement 1

Statement 2

Statement ….

}

While (Test Expression);

Program Example

#include<stdio.h>

main()

{

// This program will display the even no from 1 to 100 (do... while loop statement)

int num1 = 0;

do

{

 num1 = num1+2;

 printf("\n The Serial No is %d", num1);

}

while(num1<100);

}

For…. Loop

 It is an entry control loop. The execution process is same like while loop. The only different is that in

for loop we write initial expression, test expression and increment or decrement statement under for loop

parenthesis. So the “For loop” run the initial expression first and once, then run the statement under for

loop then test the expression then increase or decrease the value of the incrementer or decrementor then

it repeat the statements again if the test condition comes true.

Syntax

For (Initial Expression; Test Expression; Incrementor or Decrementor)

{

Statement 1

Statement 2

Statement…

}

Program Example

#include<stdio.h>

main()

{

// This program will display the even no from 1 to 100 (for...... loop statement)

int num1;

for(num1 = 0; num1<100; num1 = num1 + 2)

{

 printf("\n The Serial No is %d", num1);

}

return 0;

}

